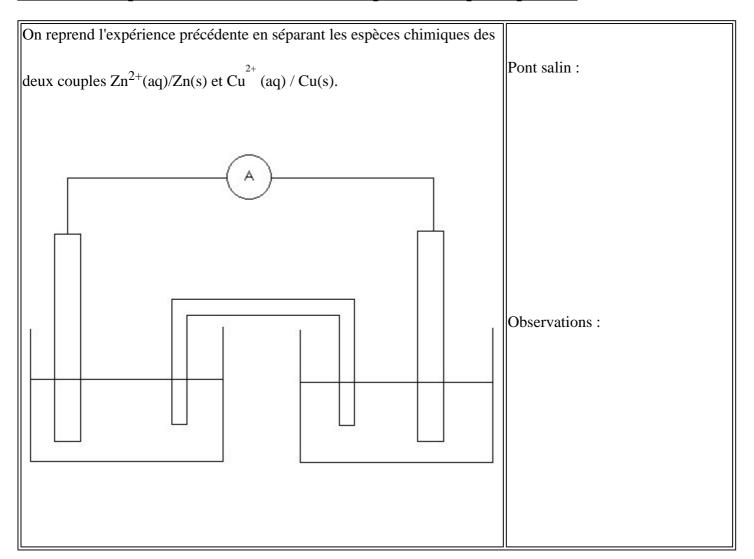
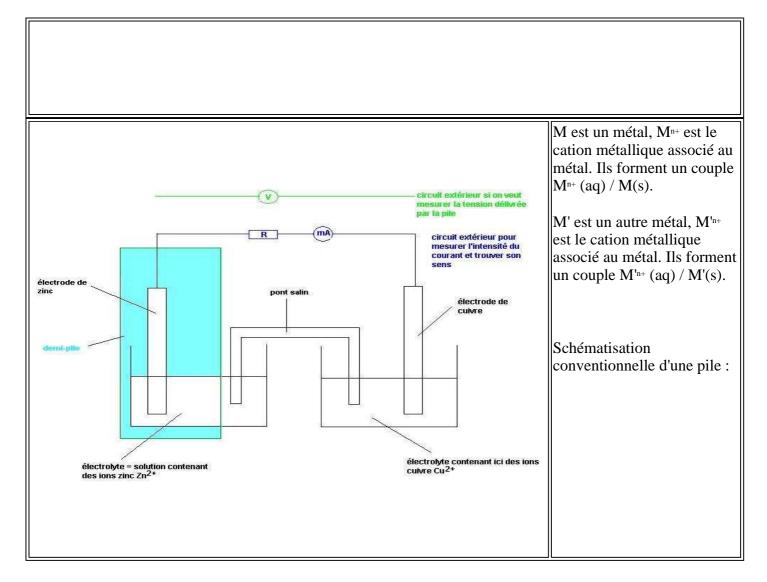

Chimie. Partie 3 : Le sens "spontané" d'évolution d'un système est-il prévisible? Le sens d'évolution d'un système chimique peut-il être inversé?

Chap 2 : Les piles : dispositifs mettant en jeu des transformations spontanées permettant de récupérer de l'énergie.


I) Transfert spontané d'électrons :

Interpréter sachant que la constante d'équilibre de l'équation suivante est $K = 2,0.10^{37}$:

$$Cu^{2+}(aq) + Zn(s) = Cu(s) + Zn^{2+}(aq)$$


II) Transfert spontané d'électrons entre des espèces chimiques séparées :

<u>Interprétation</u>:

III) Constitution et fonctionnement d'une pile :

1) Définition:

Quelle est la représentation conventionnelle de la pile Daniell :

2) Force électromotrice d'une pile :

Un voltmètre électronique branché aux bornes d'une pile permet de mesurer sa <u>force</u> électromotrice E.

$$E = V_{(borne+)} - V_{(borne-)}$$

Mesurons la tension aux bornes de la pile Daniell :

- si on branche la borne + du voltmètre sur l'électrode en cuivre on obtient :

On en déduit la borne positive de la pile :

- si on branche la borne + du voltmètre sur l'électrode en zinc on obtient : On en déduit la borne positive de la pile :

Vérifier que la borne positive obtenue pour la pile est en accord avec le sens de circulation des électrons obtenu au paragraphe II).

3) Mouvement des porteurs de charges :

Déduire des bornes de la pile Daniell, les demi-équations des réactions qui se produisent aux électrodes. Préciser si c'est une oxydation ou une réduction :
- électrode en zinc :
- électrode en cuivre :
Lorsque la pile fonctionne, que fait la concentration en ions cuivre?
Lorsque la pile fonctionne, que fait la concentration en ions zinc?
Comment est maintenue l'électroneutralité de la solution?
4) Evolution spontanée d'une pile :
Nous avons vu au paragraphe I) que l'équation de la réaction susceptible de se produire est :
$Cu^{2+}(aq) + Zn(s) = Cu(s) + Zn^{2+}(aq)$
La constante d'équilibre de l'équation est $K=2,0.10^{37}$. Le quotient de réaction initial vaut : $Q_{ri}=1,0$.
Le système évolue donc dans le sens direct jusqu'à
On en déduit le sens des réactions qui se produisent aux électrodes :
On en déduit la borne positive de la pile :

Que se passe-t-il lorsque la pile est à l'équilibre?

5) Application:

On associe une demi-pile Cu^{2+} / Cu telle que [Cu^{2+}] $_i = 0,050$ mol. L^{-1} à une demi-pile Ag^+ / Ag telle que [Ag^+] $_i = 0,010$ mol. L^{-1} , à l'aide d'un pont salin au nitrate d'ammonium.

1) L'équation de la réaction d'oxydoréduction susceptible de se produire peut s'écrire :

$$Cu^{2+}$$
 (aq) + 2 Ag(s)= $Cu(s)$ + 2 Ag⁺(aq)

Sa constante d'équilibre vaut : $K = 2,6.10^{-16}$.

Prévoir dans quel sens va évoluer le système.

- 2) En déduire les réactions aux électrodes et le sens de déplacement des porteurs de charges dans la pile lorsqu'elle débite.
- 3) Quelle est la polarité des électrodes?
- 4) Faire un schéma de cette pile en précisant le sens de I et des électrons.

La charge élémentaire est :
La charge d'un électron est :
La charge d'une mole d'électrons est :
On appelle le faraday (symbole)
La quantité d'électricité Q mise en jeu au cours du fonctionnement d'un générateur électrochimique est égale à
La quantité d'électricité Q qui circule lors du fonctionnement d'une pile qui débite un courant d'intensité I pendant la durée Δt est :
La capacité d'une pile est
V) Quantité de matière mise en jeu :
Soit la pile dont le schéma conventionnel est :
$Cu(s) \mid Cu^{2+}(aq) \parallel Ag^{+}(aq) \mid Ag(s)$
Ecrire l'équation de la réaction qui a lieu.
Pendant la durée $\Delta t = 1,5$ min, cette pile débite une intensité, considérée constante I = 86,0 mA.

Quelles sont les variations des quantités d'ions cuivre et d'ions argent pendant cette durée? Vous aider d'un

 $\underline{Remarque:} \ L'avancement \ de \ la \ réaction \ qui \ se \ produit \ à \ une \ électrode \ est \ noté \ y \ pour \ le \ différencier \ del'avancement \ de \ la \ réaction \ de \ fonctionnement \ de \ la \ pile \ (x).$

IV) Quantité d'électricité fournie :

tableau d'avancement.